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Bayesian sequential analysis provides a means to decide between possible
therapeutic treatments or, more generally, between competing hypotheses as
economicaly as possibe. A method due to Anscombe is described and its adyvan-
tages are discussed with respect to conventional procedures.

Very often the clinical psychologist has to decide which one of two
or more available treatments is to be preferred, and the problem is to
arive at such a decision with minimum costs and maximum safety. The
costs are money, time and the moral costs if patients are to be treated
with some inferior form of psychotherapy.

A frequently used and very straightforward way of testing which of
(say) two treatments is the better is simply to form two groups of
patients, have the members of group I treated with therapy A and
the members of group II treated with therapy B. If the number of
successes in each group happens to be different for the two groups, an
appropriate statistical procedure is found to guide the decision on which
of the therapies should be preferred. If one of them appears to be
‘significantly’ superior to the other, the problem has been settled. If the
null hypothesis, that both forms of therapy are equally effective, cannot
be rejected, the psychologist can proceed in either of two ways: If he
doubts the result of his analysis or his experiment, he may set up an-
other experiment, perhaps more refined, and possibly ends up with a
significant result, or he can assume that both therapies are indeed
equally effective, and that it is therefore a matter of taste which one
is applied, given that the costs of applying them are equal.

It has long been felt that this approach is unsatisfactory, mainly
because the number of patients treated inadequately is not minimised.
The sample size, that is the number of patients in each experimental
group, should have been chosen in advance with respect to the chosen
Type 1 and Type II errors, and even if one starts to suspect that one
treatment is superior to the other one while the experiment is still
under way one has to carry it out completely so that a test of signifi-
cance can be made. Furthermore, a particular therapy may indeed
yield slightly better results than another one, but the costs of applying
it may not make it worthwhile to use it. More recently, the whole
idea of tests of significance has been severely criticised (Lindley, 1970),
so that even the most practically-minded psychologist is forced to look
for some more sophisticated tools when making decisions.
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Statisticians have offered the method of sequential sampling as a
solution to the problem. A pair of patients comparable with respect to
their disorder is chosen as a trial and each of them is treated with one
of the competing therapies. We may assume that the effect of the
therapies can be scored numerically and that a higher score reflects
a better effect. If one of the therapies has appeared to be superior to
the other one, after a number of such trials, the experiment is stopped
and a decision is made; otherwise the experiment is continued. In medi-
cal and psychological contexts the maximum number of trials, Nmax,
is usually also fixed in advance. If Nmax trials have to be made and
neither of the therapies then appears to be superior to the other, the
null hypothesis (both therapies are equivalent with respect to their
effect) is accepted.

The method of sequential testing as it is known today was dev-
cloped by Wald and Barnard (see Wetherill, 1968) and has been
adapted to clinical trials by Armitage (1960) within the framework of
the Neyman-Pearson approach to decision making, where the sample
size is determined according to the choice of the probability of a Type
I ertor (i.e. the probability of rejecting Ho though it is correct), and
the probability of Type II error (the probability of rejecting H; falsely).
However, these procedures have also been criticised (for instance, see
Anscombe, 1963, and Cornfield, 1966), since the decisions made with
these procedures do not take into account the costs of accepting certain
alternatives, and even worse, depend on the stopping rule, i.e. on the
choice of the Type I and Type II errors and the resulting estimation
of the sample size, Versions of sequential testing methods based on the
Bayesian approach of decision making are offered and will be outlined
later. Firstly, some of the relevant notions and concepts will be intro-
duced.

The Sequential Probability Ratio Test (SPRT)

Let p be the cure rate of a therapy, and let T be the random variable
representing the number of patients cured by it. Then T has a prob-
ability distribution f(T, p), which will be the binomial distribution if
the parameter p is constant and the patients are cured independently.

In the following treatment the numbers in brackets refer to equa-
tions given in the appendix.

For brevity we shall write f(t,p) for {(T=t/p). Let £(t/p1) represent
the probability that t patients have been cured under the condition that
p=p1, and let f(t/po) be the same probability under the condition
p=p,. Wald (1947) considered the ratio (1) where n is the number of
observations, i.e. the total number of paits of patients examined so far.
It is obvious that the hypothesis that p—=p; becomes unlikely if 1. be-
comes small, and likely with large 1.. In particular, Wald’s decision
rule is as follows: Continue sampling as long as (2) holds, and as soon
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as 1n exceeds B, stop sampling and decide in favour of P,. If
1s exceeds A, stop sampling and decide in favour of p;.

A and B are called ‘rejection boundaries’; they are constants and
can be chosen such that they correspond to the error probabilities of a
(Type I) and b (Type II) such that the less efficient therapy is chosen
only with probability a, or that the competing therapy is chosen falsely
only with probability b. Wald has shown that approximately (3)
holds. '

For a more complete description of the SPRT see, for instance,
Wetherill (1968, p. 14). But it should be noted here, as Wald has
shown, that for the SPRT the expectation of the sample size takes a
minimum as compared to other sequential methods.

A disadvantage of the SPRT is that it implies a great variance of the
sample size, n; under certain conditions n can become very large,
possibly infinite. This is a severe disadvantage in medical and psycho-
logical trials, where one wants to experiment with a possibly inferior
therapy as little as posible. Armitage (1960) therefore provided ‘res-
tricted’ procedures, which have to be considered shortly.

Let us assume that for a certain disorder two forms of therapy are
available. We want to know whether they are equally effective or
not, for example whether the distribution of differences between the
treatments has a mean x of zero or not. This means that we have to
carry out a 2-sided test of the two hypotheses H, and Hy (4), where the
standard deviation s is used as a unit of measutement; my is a critical
value for the observed mean.

The larger the sample size, the larger the number of failures of a
therapy will be if its cure rate is constant over time. We want to
discard a therapy if the number of failures becomes larger than a
critical number, but since the failure rate depends on the sample size,
the critical number should also depend on the sample size. The sets of
critical numbers for sample sizes n=1, 2, 3, . . . are called rejection
boundaries, and Armitage suggested we should use (5), where A stands
for ‘upper boundary’ and B for ‘lower boundary’, and the coefficients
a and b are determined in a way outlined below.

Let di be the difference of the effect of the two therapies for the i-th
pair of patients, and let y. be the sum of the first n differences.

A decision for the hypothesis Hy is made if y. becomes larger than
the corresponding -z,. The hypothesis H, is accepted, if the maximum
sample size Nmax has been reached without y, leaving the boundaries
(see Figure 1.).

In order to proceed in this way, the coefficients ¢ and d in (5) have
to be determined. Armitage suggests we consider the likelihood ratio
for x = O to x == O. If x &= O we can always write x = Cs, ie.
express the non-zero value of x as a multiple or fraction C of the stand-
ard-deviation s. Armitage suggests that the likelihood ratio for x == O
to x = O along the upper boundary A should be (6) which leads to (7)
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for the coefficients in (5). In order to determine the maximum sample
size Nmax one may assume that according to the central limit theorem
the distribution of the observed differences is normal. Using the normal
distribution one can compute the probabilities P(D/c,d,Nmax), where
D is a value for a difference, and in particular one has for the differ-
ence D = C the equations (8) which can be used to compute an ap-
proximation for the value of Nmax (Wetherill, 1968, p. 77).

Armitage’s method, though elegant, has been criticised by statisticians
sharing the Bayesian viewpoint (Anscombe, 1963; Cornfield, 1966).
The criticisms put forward have been indicated in the introduction of
this paper, namely that Armitage’s methods depend, like the SPRT, on
the stopping rule, which depends on the error probabilities, which are
taken unconditionally over the whole sample space, which again implies
that decisions are based partially on what was not observed rather
than on what was observed, which may lead to absurdities. Bayesian
statisticians require that a decision should only be made dependent
upon the likelihood of the observed data and that furthermore the costs
of the decision should be taken into account. In the following, the
Bayesian approach will be outlined.

Bayesian decision making

Here the decision for a hypothesis is based on the postetior prob-
ability of that hypothesis. According to Bayes’ theorem the posterior
probability is proportional to the product of the prior probability of
the hypothesis and the likelihood of the data with respect to this hypo-
thesis.

Furthermore, the losses, which are the costs of the decision, are
taken into account. (There are, however, Bayesians who get along
without doing this).

Let us assume that a certain therapy has a cure rate p. Let Wo(p)
be the costs of accepting the therapy and Wy(p) the costs of rejecting
it. Let Pqa(p/S) be the probability of accepting the therapy under the
sampling plan S, and Prej(p/S) be the probability of rejecting it. Of
course, Pac(p/S) + Puei(p/S) = 1. Let E(n/p,S) be the expected sample
size, The loss function is then defined as (9) where the costs W, and Wy
are usually considered to be proportional to the number of cases
examined. It is clear that one wants to make a decision such that
R(p/S) is minimised. Let Pr(p) be the prior distribution of p. The risk
of a decision is then defined as (10) i.e. the risk is the expectation of the
loss with respect to the prior distribution chosen. A sequential sampl-
ing plan is called a Bayes solution if it is the result of minimising the
overall risk with respect to some prior distribution. Wetherill (1968)
shows (p. 94) that under these conditions the terminal decision only
depends on the posterior distribution of p. The question remains of
how the prior distribution is chosen and how the loss function has to

40




be defined. In general, the definition of the prior distribution and of
the loss-function will depend upon the particular situation. In the fol-
lowing, an example of a method of sequential testing in the framework
of Bayesian decision theory will be given; the example is due to Ans-
combe (1963).

Anscombe assumes that there are only two treatments under investi-
gation. The responses of patients to the treatments are assumed to be
assessable in numerical terms. It is further assumed that the two
treatments do not differ in side effects or in costs and that they have
the same relative effectiveness for all patients, The observed variable
is the difference of scores for a pair of patients, where one patient
has been treated by T1 and the other by T2. The differences are
assumed to be normally distributed with known variance, (in particular
unit variance is assumed) but with unknown mean p. A high response
score reflects a high treatment effect; therefore, T1 will be preferred to
T2 if x the mean difference is positive, and T2 will be preferred to T1
if the mean difference is negative. Assume that a decision is reached
after n observations, and let y be the sum of the n differences observed.

Let X be a random variable and let the notation N(X) indicate that
X is normally distributed. In particular, set X = y/n. Let M be the
‘true’ mean of the differences; we can then assume that X — y/n is
normally distributed about M with standard deviation the inverse oot
of n. Then (11) is the normal density for the difference between the
true observed means. This density can be taken as the likelihood-func-
tion for the true mean M since it allows us to compute the probability
of the observed mean under the condition that M is the true mean, We
now want to estimate M and therefore we have to find the posterior
distribution for M. This requires an assumption about the prior distri-
bution of M, and Anscombe suggests the uniform distribution, mainly
to keep the computations simple; a different choice of the prior does
not change the basic argument. (It should be noted here that classical
statistics also contain the assumption of a uniform prior in an implicit
and disguised form.) An alternative to the assumption of a uniform
prior would be the normal distribution (Sasaki, 1969, p. 358). Under
the assumption of a uniform prior the posterior distribution for M
can be shown to be (12). If M is greater than O, T1 will be preferred
to T2, otherwise T2 to T1. If the wrong decision was made the loss
would depend upon the value of M. Anscombe defines the loss function
as follows. If n pairs of patients have been investigated, n patients
have been given the inferior treatment. The costs are then n.g(MJ),
where g is some function of [M|. In particular, g(IM|) = M| may be
chosen. At the end of the experiment, after n pairs have been observed,
the expected loss is then given by (13) where f(M) is the distribution of
M.

This definition of the costs is not complete. Anscombe argues that
the experiments will be published and therefore will have some in-
fluence, since patients will be given the therapy which appeared to be
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superior in the experiment. If the decision is made after the experiment
was wrong this will lead to an increase of the loss or the costs. If k
patients will be treated in the future the loss is (14) where ‘sgn y’
stands for ‘signum of y’; see (15), i.e. the loss resulting from M and
y having opposite signs is considered. The total loss is found by adding
(13) and (-14) and evaluating the expectations; the necessary computa-
tions are somewhat lengthy. The resulting expression for the total loss is
then (16), where F(-ly|/n) denotes the area under the normal curve up
to X=ly|/n. This integral does not exist in closed form but its value
can be found using numerical methods and it has been tabulated.

The problem now is to find a stopping rule that minimises R(n,y).
If the value for k, the number of future patients treated with the pre-
ferred therapy is known, then the determination is always possible in
principle; it may be relatively difficult, though. But k is usually not
known, and Anscombe (1963) discusses the resulting intricacies. He
offers approximate solutions for two cases, (i) where k is assumed to
be given and (ii) where it is assumed that we are given, both n, the
number of patients examined during the experiment, and k the number
of future patients treated.

For a given sum y, R(n)y) is a function of n, the sample size. We
optimise our decision by finding that value of n for which R(n,y) has
a minimum, This value is found by differentiating R(n,y) with respect
to n, setting the derivative equal to O and solving for n. It can be shown
that R(n,y) has minima where (17) is satisfied, and the loss for a mini-
mising value of n for a given sum y is given by (18).

If after n observations n and y satisfy (17), no more observations
should be made, since this would lead to an increase of (18). The deci-
sion procedure can be summarised as follows:

1. Examine the n-th pair of patients, n = 1, 2, 3, . . . find the dif-
ference dn of the treatment effects and add to yn-1:
Yo = ¥Yn-1 + dn- Forn = 1, set Y1 = 0.

Compute n/(k - 2n) and -yn/n =y

3. Use y'n to find the value of y% = F(y), ie. the value of the area
under the normal curve up to y'y.

4. Compare y’» and n/(k -+ 2n); if they are approximately equal stop
sampling and decide for treatment E1 or T2 depending on the value
of y being positive or negative. Otherwise go back to step 1.

Equation (17) defines the boundaries for the decision problem. Ans-
combe (1963) tabulates some values of the boundaries (17), for the case
k fixed and for the case k -+ 2n chosen fixed.

Anscombe’s suggestions were given in some detail to give the
flavour of the Bayesian approach. Novick and Grizzle (1965) sug-
gested another sequential sampling plan, where categorised data are
considered: a treatment is either effective or ineffective, which leads
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to the binomial distribution of successes for a given sample size.
Novick and Grizzle discuss the effect of choosing different prior distri-
butions and suggest a graphical rather than a numerical decision pro-
cedure. However, details of their plan will not be given here and the
interested researcher is referred to their original paper.

Summary

It appears to be of great importance to test competing forms of
treatment as economically as possible, which means that the sample size
has to be kept as small as possible under the restriction that the deci-
sion should be made with maximum security, Sequential sampling plans
seem to offer a solution and have been adapted to medical and psycho-
logical trials by Armitage (1960). His decision procedures, however, are
based on the Neyman-Pearson approach of decision making, which im-
plies the disadvantage that the decision depends on the particular
stopping rule chosen and might not be optimal with regard to costs.
On the other hand, Bayesian decision making does not depend on the
stopping rule and takes the costs into account. The Bayesian approach
is outlined and its adaptation to sequential testing as suggested by
Anscombe is described.

Uwe Mortensen is Postdoctoral Fellow, Department of Psychology, 1972-74.
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APPENDIX
Equations used in the text

‘ N L= f(t’P1)/f(t]P0)
2 B<1L. <A
(3) A = (1-b)/a, B =1b/(1-a)
(4) Ho: x = O, Hy: [x/s|>my
(5) A:zy =c -+ dy, B: -zy = -c-dy
(6) p(data|Hy)/p(data|H,) = (1-b)/a
(7) ¢ = log((1-b)/a)C, d = C.s/2
(8) P(Clc,d,N) = 1-b, P(Olc,d,N) = a
(9) R(p,s) = E(n[p,S) + Pac(p|SYWo(p) -+ Pres(p|S)W1(p)
(10) D: = [ Pr(p)Wi(p)dp
(11) N((y - nM)/n)
(12) Pr(M]y) = n®N(Mn? - y/n?)dM
(13) nE(M) = nff(M)|M|dM
(14) W = kE(max(O, -sgn y))
(15) sgn y = 1, if y>0 —1, if y<O
(16) R(nyy) = [y| 4 ((k-+2)/n)(N(y/n?) - (y/nt)F(—|y|/n))
(17) F(—ly|/n) = n/(k + 2n)
(18) R(n,y) = ((k-+2n)/n)@(y/n)

Y

Figure 1. Some possible rejection boundaries according to Armitage. The ordinate
is the cumulative sum of differences in response to the drug. The X-axis is the
sample size as pairs of patients. A and B are boundary values as in formula (5).
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