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The use of functional equations to describe behaviour is demonstrated using
simple examples. A perceptual maze problem is analyzed using a model based on
some algorithms of dynamic programming. The model is applicable to work
on functional brain damage in alcoholics,

The key notions of dynamic programming are concerned with
the control of behaviour. The approach is exemplified by a classical
problem in behaviour analysis brought to my attention by Professor
Gregson. In this example, we have a bug in a box. The environment of
the box is static. Mathematically, if we call the parameters of the
environment = : i, where i = 1, 2 . . . n, then dn : i/dt = O, for all i.

We now introduce a bug into this sterile environment. To keep
the analysis simple I will neglect any problems a bug may encounter
from sensory deprivation. Bug moves at a constant speed, and his rate
of turning in degrees per unit distance travelled forward is a linear
function of the illumination level at the point where he is. Translating
this into algebra, we have: :

de/dllt=1:1 (D)

where ¢ is the angle of turn, I is the length of path segments, and p
is the illumination level at 1’. We make 1 small enough such that p is
constant over 1’ no matter what the direction of travel. We may note
from equation () that if bug is in total darkness he will go in a straight
line; if the box is brightly lit he will rotate in a circle of zero radius.

We now put bug in a box of finite width and infinite length and
let the illumination gradient across the box from wall to wall increase
uniformly from no light at the left-hand side to very bright at the right-

hand side. The illumination gradient does not change along the length
of the box.

If we initially place bug at x units of length from the left-hand
wall, we can now replace equation (1) by the following:

do/dl=x (2)

If bug is put in front of a psychologist who knows nothing of
differential equations then we have a high probability of getting from
that psychologist a catalogue of behaviours labelled wall-hugging,
circling, stopping on the spot, and so forth. Behaviour will be control-
lable in the sense used by the operant psychologist, and he may say
‘alter the light level and you have altered reinforcement’. But the whole
point of this example is this — bug hasn’t got a repertoire of responses,
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he has only one. We can predict what bug is going to do from now to
eternity given his boundary conditions and his starting point.

This example shows that in some situations it makes more sense
to work with models which account for behaviour, and to forego tradi-
tional ways of ‘explaining’ the data.

We may take this approach a step further, which is what Toda
(1962) did in his design of a fungus eater. Those of you who know
this work will remember that Toda set out to design a fungus eater.
This fungus eater was placed on a planet which had high levels of
uranium, in the form of pure nuggets strewn over the surface of the
planet in a systematically varying fashion. Also on this planet grew a
primitive fungus, whose distribution over the planet’s surface also
varied systematically. The task of the fungus eater was to collect
uranium for the designer who sat back on earth, but in order to col-
lect the ore the fungus eater must search for and consume fungus, its
only source of energy. We may build into such a situation a number of
well-defined constraining conditions on the behaviour of the fungus
eater. Costs on his survival will play a part in predicting what fungus
eater does in a given situation. What Toda is suggesting is that we
begin with an environment and attempt to design a subject with the
minimal optimal qualities to function effectively in this environment.
This is close to the real world situation where efficiency is not measured
by the speed with which a man presses a buzzer, but rather how well
he coordinates several different functions in order to solve problems
of daily life. In other words, given this mode of looking at a system,
sets of constraining conditions may be regarded as equivalent to models
of man or beast which realistically describe human behaviour in a
given environment.

We now consider a testricted class of problem-solving tasks—per-
ceptual maze problems which can be formulated as finite multistage
decision making problems that may be useful to assess functional brain
damage in alcoholics. Dynamic programming, as formulated by Bellman
(1968), is an iterative technique for finding optimal decisions for
multistage decision making problems. It is desirable to find optimal
policies, as without them we cannot satisfactorily analyse the problem
solver’s hehaviour. The maze task to which I am applying some of Bell-
man’s algorithms stems from the work of Alick Elithorn. Maze prob-
lems have a long history in psychology, stretching back to the work
of Binet and Porteous, and their continued survival seems likely, Yet the
maze has been treated in cursory fashion by those who employ it.
Benton et al. (1963) produced a set of mazes which were found sensi-
tive to brain damage. In the Elithorn maze (see Figure 1) the subject
must pass through as many or as few points as possible. Benton et al.
gave the patient a score of one if he correctly solved the maze, and
zero if he did not. This scheme has two obvious shortcomings: it makes
no distinction between an easy and a difficult maze, and it makes no
distinction between a poor solution and one which is good but not
complete.

Davies and Davies (1965) present a scoring system based on a
graph-theoretical analysis of the maze which has a well-defined mathe-
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gress beyond the stage of ad hoc empiricism. What is required, and
what Bellman (1968) provides, is a tool for identifying within a model
f the parameters which are sensitive to variation due to diffuse cerebral
. dysfunction.

Using an example of a maze, or more specifically a variable end-
point network as provided by Rapoport (1968) we might have, say, that
the value of the arc going from P(1, 1) to P(2, 2) is 40, that going
from P (1, 1) to P(2, 2) is 49 (see Figure 1). In general, let us asso-
ciate the symbol A U P(i, j) with the value of the arc going from
P(, j) to P(i, j-+1), and similarly A R P(i, j) for P(i, j) to PG + 1,
i.
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In the Elithorn maze the task of the subject is to trace a line from
vertex (P1, 1) to any node on the line joining P(1, n) and P(n, 1);
his path must keep to the lines and must not double back. Thus, we
1 construct things such that the path through the maze or network must

[ be North-East monotonic. A path is N.E. monotonic if, for any of its
- arcs [P(ij) P(,i)]
. either i < ' and j = §

ori =1 and j <}
To solve the minimum value problem we define an optimal value
| | function, SP(i,j) = 1, 2 .. ., n at the vertices of P(,j) of the network
| under discussion as : SP(i,j) = the value of the (minimum value)
. admissible path connecting P(i,j) with any vertex on the terminal line.
| Since the path from any vertex on the terminal line equals zero
we have the following boundary condition:

SP@,j) = O for i+j = n-+1 [3]

The principle of optimality states that “an optimal policy has the
property that: whatever the initial state and initial decisions are, the
remaining decisions must constitute an optimal policy with regard to
the state resulting from the first decision.”

Applying this principle to our maze problem we can state that:

SP(,j) = min(W,Z) [4]
where W = A P P(i,j) + SP((i-+1), j)
| | and Z = A R P(i,j) + SP3, (+1))
E and where 2 < 1+ j < n,
and SP(i,j), ARP(,j), AUP(i,j) are defined as before.

1T Equations [3] and [4] provide a simple and backward algorithm
: for finding an admissible path through the variable end-point network.
We first compute the minimum path values for the (n-1) one-stage
problems.

We next solve the (n-2) two-stage problems in terms of the already
known solutions for the (n-1) one-stage problem, and so on.

2 - The forward algorithm follows a similar form, only the indices are
| changed.

‘ The whole problem becomes more interesting, psychologically
speaking, when we consider algorithms which place constraints on the
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problem solver. For example, the planning horizon of a person is lim-
ited; we may include this in our model. Subjects usually scan from
vertex to terminal point so we shall consider here only the forward
algorithm. When a forward algorithm F:k is used, subject is assumed
to start from vertex P(h) and compute the values of all the paths
from P(h) to P(h + k),

where h = i+j = 2,3, . . ., 2n-k
and k : 1<k<2n-2 is a fixed constant

After the values of all paths connecting P(h) and P(h+4-k) are
computed, a path with the minimum value is selected and subject
moves one step along this path from P(h) to P(h-+1). When in vertex
P(h-+1) subject computes values of all paths from P(h-+1) to P(h+1
+k), picks a path with minimum value and moves along this path to
P(h+2), and so on.

We may calculate back algorithms B:k in similar fashion.

Using fixed values of k, Rapoport (1968), has found that these
simple models describe without error the result of a substantial portion
of subjects. Obviously the model may be improved by placing other
parameters in the model. k may vary in a non-Gaussian fashion, assum-
ing larger values near the bottom vertex than near the top row. For
some other constraints the subject may start at some node P(.))
moving from this node in two directions—upwards to the top row and
downwards to the bottom vertex. Different values of k may be associa-
ted with the “forward’”’ and “backward” solutions.

We may extend the use of dynamic programming to situations
where the specification of a control does not uniquely determine a
solution. Typically, problems in the social sciences will contain variables
determined by random or non-Gaussian distribution functions, as well
as the usual state-dependent and control-dependent terms. As a result of
these stochastic features, a control policy determines a probability meas-
ure defined over the space of all possibe solutions, but does not deter-
mine which solution actually occurs, We can set up an expected opti-
mal value function, which yields an expected value associated with
each control function or policy.

We have been concerned just now with processes which evolve
by discrete steps since the concept of a sequence of random variables
is intuitively (and computationally) easier to grasp than the concept of
a continuous stochastic process. By application of the principle of
optimality we can obtain a recurrence relation characterising the optimal
expected value function.

As soon as we begin to analyse the concept of information the
question of learning arises. If we are given the task of controlling a
system about which not everything is known initially, we can try to
improve our performance over time by testing and experimenting
with different kinds of control actions. We can call a process where
both control and learning are involved “adaptive”.

Problems just posed represent tremendous scope for computer-
human systems research. Already Bellman (1968) is working on a
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massive project concerned with the simulation of the psychiatric inter-
view. If we start with the question “is symptom A present” a Yes
answer invokes another question pertaining to symptom A, if a nega-
tive answer results we ask a question pertaining to symptom B, and
so on. The mathematical problem is to do this experimentation and
testing in some efficient manner. The overlapping nature of so many
symptom groups makes the preceding approach difficult. Nevertheless

it is being used successfully in a number of clinics for preliminary
screening,

To look at another application of control theoty we may take an
example from drug research. Once we have constructed a mathematical
model that imitates the behaviour of the actual system in sufficient
detail, we can begin to study the question of improving the behaviour
of the system in many ways, i.e. we can begin to attempt the control
of the system. An intermediate problem at present feasible is the
determination of the kinds of drugs that ought to be administered for
various purposes, dosages and ways in which they should be admin-
istered, and in the combinations that give the most efficacious results,
In the longer term it may be that little extra effort will be required to

guide us in the choice of a new drug family on the basis of results
obtained using the previous drugs.

Figure 1. An example of an Elithorn maze.
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A passionate skeptic may ask, if we already have a theory of
control, why hasn’t it found common acceptance? One may accept a
comment that new theories are never accepted; their opponents die
off. Krantz (1972) has remarked that it is a fact, well known to
students of propaganda, that simplification introduced into confusion

has high acceptance value. It is not without teason that Krantz is
referring to some of the more inbred areas of operant psychology, yet
his comment is apposite here. According to Bellman (1968), under-
standing must involve operational algorithms.

Similarly, Markovian models of learning have features in com-
mon with discrete state control systems. Kinsch and Morris (1965) and
Waugh and Smith (1962) have shown that in analyses of performance
in froe-recall situations, a two-stage Markov model gives an acceptable
account of the data. The pioneering work done in psychology using
dynamic programming techniques shows that these theories of behaviour
are testable, and can be modified to fit the data.

The work described in this paper was supported by a grant, from the War
}(’;ensions Medical Research Trust Fund Board, held by Professor R. A, M.
regson.
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